15,352 research outputs found

    The Photon Wave Function in Non-forward Diffractive Scattering with Non-vanishing Quark Masses

    Get PDF
    The light-cone Photon wave function in explicit helicity states, valid for massive quarks and in both momentum and configuration space, is presented by considering the leading order photon-proton hard scattering, i.e., the splitting quark pair scatters with the proton in the Regge limit. Further we apply it to the diffractive scattering at nonzero momentum transfer and reach a similar factorization as in the case of zero momentum transfer.Comment: 11 pages LaTeX, 2 figures, version to appear in Phys. Rev.

    Significance Analysis for Pairwise Variable Selection in Classification

    Get PDF
    The goal of this article is to select important variables that can distinguish one class of data from another. A marginal variable selection method ranks the marginal effects for classification of individual variables, and is a useful and efficient approach for variable selection. Our focus here is to consider the bivariate effect, in addition to the marginal effect. In particular, we are interested in those pairs of variables that can lead to accurate classification predictions when they are viewed jointly. To accomplish this, we propose a permutation test called Significance test of Joint Effect (SigJEff). In the absence of joint effect in the data, SigJEff is similar or equivalent to many marginal methods. However, when joint effects exist, our method can significantly boost the performance of variable selection. Such joint effects can help to provide additional, and sometimes dominating, advantage for classification. We illustrate and validate our approach using both simulated example and a real glioblastoma multiforme data set, which provide promising results.Comment: 28 pages, 7 figure

    Accelerating charging dynamics in sub-nanometer pores

    Get PDF
    Having smaller energy density than batteries, supercapacitors have exceptional power density and cyclability. Their energy density can be increased using ionic liquids and electrodes with sub-nanometer pores, but this tends to reduce their power density and compromise the key advantage of supercapacitors. To help address this issue through material optimization, here we unravel the mechanisms of charging sub-nanometer pores with ionic liquids using molecular simulations, navigated by a phenomenological model. We show that charging of ionophilic pores is a diffusive process, often accompanied by overfilling followed by de-filling. In sharp contrast to conventional expectations, charging is fast because ion diffusion during charging can be an order of magnitude faster than in bulk, and charging itself is accelerated by the onset of collective modes. Further acceleration can be achieved using ionophobic pores by eliminating overfilling/de-filling and thus leading to charging behavior qualitatively different from that in conventional, ionophilic pores

    Transition behavior of k-surface from hyperbola to ellipse

    Get PDF
    The transition behavior of the k-surface of a lossy anisotropic indefinite slab is investigated. It is found that, if the material loss is taken into account, the k-surface does not show a sudden change from hyperbola to the ellipse when one principle element of the permittivity tensor changes from negative to positive. In fact, after introducing a small material loss, the shape of the k-surface can be a combination of a hyperbola and an ellipse, and a selective high directional transmission can be obtained in such a slab
    corecore